Opencv with cpp example
module
core
: a compact module defining basic data structures, including the dense multi-dimensional array Mat, and basic functions used by all other modulesimgproc
: an image processing module that includes linear and non-linear image filtering, geometrical image transformations (resize, affine and perspective warping, generic table-based remapping), color space conversion, histograms, and so onvideo
: a video analysis module that includes motion estimation, background subtraction, and object tracking algorithmscalib3d
: basic multiple-view geometry algorithms, single and stereo camera calibration, object pose estimation, stereo correspondence algorithms, and elements of 3D reconstructionfeatures2d
: salient feature detectors, descriptors, and descriptor matchersobjdetect
: detection of objects and instances of the predefined classes (for example: faces, eyes, mugs, people, cars, and so on)ml
: various machine learning algorithms such as K-Means, Support Vector Machines, and Neural Networkshighgui
: an easy-to-use interface for video capturing, image and video codecs, and simple UI capabilities (only a subset available on iOS)cuda
: GPU-accelerated algorithms from different OpenCV modules (unavailable on iOS)ocl
: common algorithms implemented using OpenCL (unavailable on iOS) a few more helper modules such as Python bindings and user-contributed algorithms
Load, Modify, and Save an Image
Load, Modify, and Save an Image
#include <opencv2/opencv.hpp>
using namespace cv;
/*
this example show two windows
one for origin color,
one for gray color
make
./readimg.out logo.png
*/
int main(int argc, char** argv) {
char* imageName = argv[1];
std::string img_path = "./imgs/";
// concat char* to string
std::string write_file = "gray_";
write_file.append(imageName);
Mat image;
// cv::imread has BGR default channel order in case of color images
image = imread(img_path + imageName, 1);
if (argc != 2 || !image.data) {
printf(" No image data \n ");
return -1;
}
Mat gray_image;
// convert our image from BGR to Grayscale format
// detail
// http://docs.opencv.org/trunk/d7/d1b/group__imgproc__misc.html#ga397ae87e1288a81d2363b61574eb8cab
cvtColor(image, gray_image, COLOR_BGR2GRAY);
imwrite(img_path + write_file, gray_image);
namedWindow(imageName, WINDOW_AUTOSIZE);
namedWindow("Gray image", WINDOW_AUTOSIZE);
imshow(imageName, image);
imshow("Gray image", gray_image);
waitKey(0); // hold wait to exit
return 0;
}
How to scan images, lookup tables and time measurement with OpenCV
How to scan images, lookup tables and time measurement with OpenCV
to scan the image, there privide four different way to scan image.
because scan image is quite common action, opencv builtin function cv::LUT()
, in this tutorial also show the performance, tha LUT
show the best computation performance
#include <iostream>
#include <opencv2/core.hpp>
#include <opencv2/core/utility.hpp>
#include <opencv2/highgui.hpp>
#include <sstream>
#include "opencv2/imgcodecs.hpp"
using namespace std;
using namespace cv;
static void help() {
cout << "\n----------------------------------------------------------------"
"----------"
<< endl
<< "This program shows how to scan image objects in OpenCV (cv::Mat). "
"As use case"
<< " we take an input image and divide the native color palette (255) "
"with the "
<< endl
<< "input. Shows C operator[] method, iterators and at function for "
"on-the-fly item address calculation."
<< endl
<< "Usage:" << endl
<< "./how_to_scan_images <imageNameToUse> <divideWith> [G]" << endl
<< "if you add a G parameter the image is processed in gray scale"
<< endl
<< "------------------------------------------------------------------"
"--------"
<< endl
<< endl;
}
Mat& ScanImageAndReduceC(Mat& I, const uchar* table);
Mat& ScanImageAndReduceIterator(Mat& I, const uchar* table);
Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar* table);
int main(int argc, char* argv[]) {
help();
if (argc < 3) {
cout << "Not enough parameters" << endl;
return -1;
}
Mat I, J;
if (argc == 4 && !strcmp(argv[3], "G"))
I = imread(argv[1], IMREAD_GRAYSCALE);
else
I = imread(argv[1], IMREAD_COLOR);
if (I.empty()) {
cout << "The image" << argv[1] << " could not be loaded." << endl;
return -1;
}
//! [dividewith]
int divideWith = 0; // convert our input string to number - C++ style
stringstream s;
s << argv[2];
s >> divideWith;
if (!s || !divideWith) {
cout << "Invalid number entered for dividing. " << endl;
return -1;
}
uchar table[256];
for (int i = 0; i < 256; ++i)
table[i] = (uchar)(divideWith * (i / divideWith));
//! [dividewith]
const int times = 100;
double t;
t = (double)getTickCount();
for (int i = 0; i < times; ++i) {
cv::Mat clone_i = I.clone();
J = ScanImageAndReduceC(clone_i, table);
}
t = 1000 * ((double)getTickCount() - t) / getTickFrequency();
t /= times;
cout << "Time of reducing with the C operator [] (averaged for " << times
<< " runs): " << t << " milliseconds." << endl;
t = (double)getTickCount();
for (int i = 0; i < times; ++i) {
cv::Mat clone_i = I.clone();
J = ScanImageAndReduceIterator(clone_i, table);
}
t = 1000 * ((double)getTickCount() - t) / getTickFrequency();
t /= times;
cout << "Time of reducing with the iterator (averaged for " << times
<< " runs): " << t << " milliseconds." << endl;
t = (double)getTickCount();
for (int i = 0; i < times; ++i) {
cv::Mat clone_i = I.clone();
ScanImageAndReduceRandomAccess(clone_i, table);
}
t = 1000 * ((double)getTickCount() - t) / getTickFrequency();
t /= times;
cout << "Time of reducing with the on-the-fly address generation - at "
"function (averaged for "
<< times << " runs): " << t << " milliseconds." << endl;
//! [table-init]
Mat lookUpTable(1, 256, CV_8U);
uchar* p = lookUpTable.ptr();
for (int i = 0; i < 256; ++i) p[i] = table[i];
//! [table-init]
t = (double)getTickCount();
for (int i = 0; i < times; ++i)
//! [table-use]
LUT(I, lookUpTable, J);
//! [table-use]
t = 1000 * ((double)getTickCount() - t) / getTickFrequency();
t /= times;
cout << "Time of reducing with the LUT function (averaged for " << times
<< " runs): " << t << " milliseconds." << endl;
return 0;
}
//! [scan-c]
Mat& ScanImageAndReduceC(Mat& I, const uchar* const table) {
// accept only char type matrices
CV_Assert(I.depth() == CV_8U);
int channels = I.channels();
int nRows = I.rows;
int nCols = I.cols * channels;
if (I.isContinuous()) {
nCols *= nRows;
nRows = 1;
}
int i, j;
uchar* p;
for (i = 0; i < nRows; ++i) {
p = I.ptr<uchar>(i);
for (j = 0; j < nCols; ++j) {
p[j] = table[p[j]];
}
}
return I;
}
//! [scan-c]
//! [scan-iterator]
Mat& ScanImageAndReduceIterator(Mat& I, const uchar* const table) {
// accept only char type matrices
CV_Assert(I.depth() == CV_8U);
const int channels = I.channels();
switch (channels) {
case 1: {
MatIterator_<uchar> it, end;
for (it = I.begin<uchar>(), end = I.end<uchar>(); it != end; ++it)
*it = table[*it];
break;
}
case 3: {
MatIterator_<Vec3b> it, end;
for (it = I.begin<Vec3b>(), end = I.end<Vec3b>(); it != end; ++it) {
(*it)[0] = table[(*it)[0]];
(*it)[1] = table[(*it)[1]];
(*it)[2] = table[(*it)[2]];
}
}
}
return I;
}
//! [scan-iterator]
//! [scan-random]
Mat& ScanImageAndReduceRandomAccess(Mat& I, const uchar* const table) {
// accept only char type matrices
CV_Assert(I.depth() == CV_8U);
const int channels = I.channels();
switch (channels) {
case 1: {
for (int i = 0; i < I.rows; ++i)
for (int j = 0; j < I.cols; ++j)
I.at<uchar>(i, j) = table[I.at<uchar>(i, j)];
break;
}
case 3: {
Mat_<Vec3b> _I = I;
for (int i = 0; i < I.rows; ++i)
for (int j = 0; j < I.cols; ++j) {
_I(i, j)[0] = table[_I(i, j)[0]];
_I(i, j)[1] = table[_I(i, j)[1]];
_I(i, j)[2] = table[_I(i, j)[2]];
}
I = _I;
break;
}
}
return I;
}
//! [scan-random]
Mask operations on matrices
enhance photo
#include <iostream>
#include <opencv2/highgui.hpp>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
using namespace std;
using namespace cv;
static void help(char* progName) {
cout << endl
<< "This program shows how to filter images with mask: the write it "
"yourself and the"
<< "filter2d way. " << endl
<< "Usage:" << endl
<< progName
<< " [image_name -- default ../data/lena.jpg] [G -- grayscale] "
<< endl
<< endl;
}
void Sharpen(const Mat& myImage, Mat& Result);
int main(int argc, char* argv[]) {
help(argv[0]);
const char* filename = argc >= 2 ? argv[1] : "./imgs/lena.jpg";
Mat src, dst0, dst1;
if (argc >= 3 && !strcmp("G", argv[2]))
src = imread(filename, IMREAD_GRAYSCALE);
else
src = imread(filename, IMREAD_COLOR);
if (src.empty()) {
cerr << "Can't open image [" << filename << "]" << endl;
return -1;
}
namedWindow("Input", WINDOW_AUTOSIZE);
namedWindow("Output", WINDOW_AUTOSIZE);
imshow("Input", src);
double t = (double)getTickCount();
Sharpen(src, dst0);
t = ((double)getTickCount() - t) / getTickFrequency();
cout << "Hand written function times passed in seconds: " << t << endl;
imshow("Output", dst0);
Mat kernel = (Mat_<char>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);
t = (double)getTickCount();
filter2D(src, dst1, src.depth(), kernel);
t = ((double)getTickCount() - t) / getTickFrequency();
cout << "Built-in filter2D time passed in seconds: " << t << endl;
imshow("Output", dst1);
waitKey();
return 0;
}
void Sharpen(const Mat& myImage, Mat& Result) {
CV_Assert(myImage.depth() == CV_8U); // accept only uchar images
const int nChannels = myImage.channels();
Result.create(myImage.size(), myImage.type());
for (int j = 1; j < myImage.rows - 1; ++j) {
const uchar* previous = myImage.ptr<uchar>(j - 1);
const uchar* current = myImage.ptr<uchar>(j);
const uchar* next = myImage.ptr<uchar>(j + 1);
uchar* output = Result.ptr<uchar>(j);
for (int i = nChannels; i < nChannels * (myImage.cols - 1); ++i) {
*output++ = saturate_cast<uchar>(
5 * current[i] - current[i - nChannels] -
current[i + nChannels] - previous[i] - next[i]);
}
}
Result.row(0).setTo(Scalar(0));
Result.row(Result.rows - 1).setTo(Scalar(0));
Result.col(0).setTo(Scalar(0));
Result.col(Result.cols - 1).setTo(Scalar(0));
}
capture camera frame
- VideoCapture(int) read camera
- VideoCapture(string) read filestream
more detail cv::VideoCapture Class Reference
#include "opencv2/opencv.hpp"
using namespace cv;
int main(int, char**) {
// VideoCapture cap(0); // open the default camera
VideoCapture cap("./videos/sample.mp4");
if (!cap.isOpened()) { // check if we succeeded
std::cout << "Could not open source" << std::endl;
return -1;
}
namedWindow("Video", 1);
while (1) {
Mat frame;
cap >> frame; // get a new frame from camera
imshow("Video", frame);
// Press 'c' to escape
if (waitKey(30) == 'c') break;
}
return 0;
}
compile args
compile with opencv
g++ source -o output `pkg-config --cflags --libs opencv`
compile with opencv and opengl
g++ source -o output -lGL -lGLU -lglut `pkg-config --cflags --libs opencv`
compile with opencv, opengl and cuda
g++ source -o output -L/usr/local/cuda/lib64/ -lcuda -lcudart -lGL -lGLU -lglut `pkg-config --cflags --libs opencv`
get property
referSet or Get Property from Camera using OpenCV
VideoCapture.set()
or VideoCapture.get()
CV_CAP_PROP_POS_MSEC
影片播放毫秒CV_CAP_PROP_POS_FRAMES
影片播放幀數CV_CAP_PROP_POS_AVI_RATIO
影片播放百分比CV_CAP_PROP_FRAME_WIDTH
影像解析度(寬)CV_CAP_PROP_FRAME_HEIGHT
影像解析度(高)CV_CAP_PROP_FPS
每秒輸出幀數CV_CAP_PROP_FOURCC
壓縮4碼CV_CAP_PROP_FRAME_COUNT
影片總幀數CV_CAP_PROP_FORMAT
Format of the Mat objects returned by retrieve() .CV_CAP_PROP_MODE
Backend-specific value indicating the current capture mode.CV_CAP_PROP_BRIGHTNESS
影像亮度CV_CAP_PROP_CONTRAST
影像對比度CV_CAP_PROP_SATURATION
影像飽和度CV_CAP_PROP_HUE
影像色度CV_CAP_PROP_GAIN
影像增益CV_CAP_PROP_EXPOSURE
影像曝光度CV_CAP_PROP_CONVERT_RGB
影像是否被轉成RGB格式CV_CAP_PROP_WHITE_BALANCE
目前不支援白平衡CV_CAP_PROP_RECTIFICATION
stereo cameras
color
[latex]RGB \leftarrow\rightarrow \ GRAY[/latex]
[latex]RGB [\ A\ ]\ to\ Gray:\ Y \leftarrow 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B[/latex]
- COLOR_BGR2RGB
- COLOR_RGB2BGR
- COLOR_BGR2GRAY (convert between RGB to grayscale)
- COLOR_BGR2XYZ (convert BGR to CIE XYZ)
- COLOR_XYZ2BGR
- COLOR_BGR2YCrCb (convert BGR to luma-chroma)
- COLOR_YCrCb2BGR
- COLOR_BGR2HSV (convert BGR to HSV)
- COLOR_HSV2BGR
- COLOR_BGR2Lab (convert BGR to CIE Lab)
- COLOR_Lab2BGR
- COLOR_BGR2HLS (convert BGR to HLS)
- COLOR_HLS2BGR
harr cascades
- haarcascade_frontalface_default.xml
- haarcascade_eye_tree_eyeglasses.xml
- haarcascade_frontalface_alt_tree.xml
- haarcascade_frontalface_alt.xml
- haarcascade_frontalface_alt2.xml
- haarcascade_frontalface_default.xml
- haarcascade_fullbody.xml
- haarcascade_lefteye_2splits.xml
- haarcascade_lowerbody.xml
- haarcascade_mcs_eyepair_big.xml
- haarcascade_mcs_lefteye.xml
- haarcascade_mcs_mouth.xml
- haarcascade_mcs_nose.xml
- haarcascade_mcs_righteye.xml
- haarcascade_mcs_upperbody.xml
- haarcascade_profileface.xml
- haarcascade_righteye_2splits.xml
- haarcascade_upperbody.xml
- haarcascade_mcs_eyepair_small.xml
moudles
core. 基本資料結構的緊湊模組,包含操作影像像素及1.0與2.0版本格式交換
imgproc. 影像處理模組,包含線性與非線性的影像濾波器及幾何影像的轉換(影像縮放翻轉、色彩空間轉換和直方圖操作等)
imgcodecs. 影像格式編碼、解碼及影像存取
videoio. 攝影機操作
highgui. 提供簡易的視窗介面及鍵盤與滑鼠操作
video. 物件追蹤、背景相減及移動方向預估等
calib3d. 多視角幾何演算法,影像校正、3D物件重建及姿態估測等
features2d. 特徵擷取及特徵描述
objdetect. 物件偵測,如人臉偵測、眼睛偵測、嘴巴偵測、鼻子偵測及身形偵測等
ml. 機器學習演算法,如KNN、貝式機率分類器、SVM等
flann. 實現FLANN演算法
photo. 影像去雜訊、HDR
stitching. 影像合成相關技術
cudaarithm. 使用CUDA資料結構操作
cudabgsegm. 使用CUDA的背景相減MOG
cudacodec. 使用CUDA的影片存取讀取
cudafeatures2d. 使用CUDA實現部分特徵擷取技術 …
resize
void cvResize(const CvArr* src, CvArr* dst, int interpolation=CV_INTER_LINEAR )
src 來源影像(input image)
dst 目標影像(output image)
interpolation修改、插補的方法
INTER_NEAREST 臨近元素插值法
INTER_LINEAR 雙線性差值法(默認)
INTER_CUBIC 立方差值法
INTER_AREA 像素關係重採樣法(可避免波紋)
Landmark Detection and 3D Face Reconstruction using Modern C++
Face Detection using Haar Cascades
Smooth Face Tracking with OpenCV
Face Detection and Recognition (Theory and Practice)
#include <opencv/cv.h>
#include <opencv/highgui.h>
#include <opencv/ml.h>
void doMosaic(IplImage* in, int x, int y,
int width, int height, int size);
int main (int argc, char **argv)
{
int i, c;
IplImage *src_img = 0, *src_gray = 0;
const char *cascade_name = "/opt/local/share/opencv/haarcascades/haarcascade_frontalface_default.xml";
CvHaarClassifierCascade *cascade = 0;
CvMemStorage *storage = 0;
CvSeq *faces;
cascade = (CvHaarClassifierCascade *) cvLoad (cascade_name, 0, 0, 0);
cvNamedWindow ("Capture", CV_WINDOW_AUTOSIZE);
CvCapture *capture = cvCreateCameraCapture(0);
assert(capture != NULL);
while (1) {
src_img = cvQueryFrame (capture);
src_gray = cvCreateImage (cvGetSize(src_img), IPL_DEPTH_8U, 1);
storage = cvCreateMemStorage (0);
cvClearMemStorage (storage);
cvCvtColor (src_img, src_gray, CV_BGR2GRAY);
cvEqualizeHist (src_gray, src_gray);
faces = cvHaarDetectObjects (src_gray, cascade, storage,
1.11, 4, 0, cvSize (40, 40));
for (i = 0; i < (faces ? faces->total : 0); i++) {
CvRect *r = (CvRect *) cvGetSeqElem (faces, i);
doMosaic(src_img, r->x, r->y, r->width, r->height, 20);
}
cvShowImage("Capture", src_img);
cvReleaseImage(&src_gray);
c = cvWaitKey (2);
if (c == '\x1b')
break;
}
cvReleaseCapture (&capture);
cvDestroyWindow ("Capture");
return 0;
}
void doMosaic(IplImage* in, int x0, int y0,
int width, int height, int size)
{
int b, g, r, col, row;
int xMin = size*(int)floor((double)x0/size);
int yMin = size*(int)floor((double)y0/size);
int xMax = size*(int)ceil((double)(x0+width)/size);
int yMax = size*(int)ceil((double)(y0+height)/size);
for(int y=yMin; y<yMax; y+=size){
for(int x=xMin; x<xMax; x+=size){
b = g = r = 0;
for(int i=0; i<size; i++){
if( y+i > in->height ){
break;
}
row = i;
for(int j=0; j<size; j++){
if( x+j > in->width ){
break;
}
b += (unsigned char)in->imageData[in->widthStep*(y+i)+(x+j)*3];
g += (unsigned char)in->imageData[in->widthStep*(y+i)+(x+j)*3+1];
r += (unsigned char)in->imageData[in->widthStep*(y+i)+(x+j)*3+2];
col = j;
}
}
row++;
col++;
for(int i=0;i<row;i++){
for(int j=0;j<col;j++){
in->imageData[in->widthStep*(y+i)+(x+j)*3] = cvRound((double)b/(row*col));
in->imageData[in->widthStep*(y+i)+(x+j)*3+1] = cvRound((double)g/(row*col));
in->imageData[in->widthStep*(y+i)+(x+j)*3+2] = cvRound((double)r/(row*col));
}
}
}
}
}